Путеводитель по сайту
8 800 333-00-77
 бесплатно по всей России
Презентация возможностей

Личный кабинет

Регистрация

Восстановить пароль

Наши проекты

  • Он-лайн журнал 8 часов
  • Клинский институт охраны и условий труда

Новости

27 декабря 2024 г.

Эксперты КИОУТ приняли участие в деловой программе БИОТ 2024

С 10 по 13 декабря 2024 года в московском международном выставочном центре Крокус Экспо проходила 28-я Международная специализированная выставка – деловой форум «Безопасность и...

Законодательство

22 ноября 2024 г.

Проект Порядка проведения экспертизы временной нетрудоспособности

Минздрав России разработал проект приказа «Об утверждении Порядка проведения экспертизы временной нетрудоспособности»... Минздрав России разработал проект приказа «Об утверждении Порядка проведения экспертизы временной нетрудоспособности» (...

Статистика

16 декабря 2024 г.

Снижение производственного травматизма – задача каждого работодателя

Предупреждение производственного травматизма является одним из основных направлений государственной политики в области охраны труда. В соответствии с пунктом 2 статьи 17 Федерального закона от...

Специальная оценка условий труда

19 ноября 2024 г.

Роструд разъяснил порядок изменения условий трудового договора в части отмены доплаты за работу во вредных условиях труда

По результатам специальной оценки условий труда (далее – СОУТ) работнику улучшены условия труда. Доплату за вредные условия труда необходимо отменить. Можно ли сразу заключить с...

Консультация: влияние инфракрасного излучения на здоровье работников

10 сентября 2020 г.

Тепловое излучение было открыто ученым Э. Беккерелем в 1869 году. Тепловые лучи принято называть инфракрасным излучением, охватывающим достаточно широкую область спектра оптического излучения в пределах от 0,78 до 1000 мкм. Важно понимать характер и неоднозначность воздействия инфракрасного излучения на организм человека. При превышении пределов физиологической ком­пенсации теплообмена наступает перегрев или переохлаждение.
Тепловое излучение было открыто ученым Э. Беккерелем в 1869 году. Тепловые лучи принято называть инфракрасным излучением, охватывающим достаточно широкую область спектра оптического излучения в пределах от 0,78 до 1000 мкм. Важно понимать характер и неоднозначность воздействия инфракрасного излучения на организм человека. При превышении пределов физиологической ком­пенсации теплообмена наступает перегрев или переохлаждение.
 



 
Инфракрасные лучи представляют собой поток материальных частиц, который характеризуется наличием выраженных волновых и квантовых свойств. Инфракрасное излучение рассматривается как совокупность периодических электромагнитных колебаний, а также по своей физической природе является потоком квантовых фотонов.



ВОПРОС: 


Какие элементы производственной среды являются источниками инфракрасного излучения?



ОТВЕТ: 


Любые нагретые тела являются источниками инфракрасного излучения. Нейтраль­ными являются только такие тела, которые имеют температуру, при которой устанавливается радиационное равновесие с равным приходом и расходом радиации. К источникам положительной инфракрасной радиации относят­ся те, которые имеют температуру ниже 600 °С (температура «красно­го» каления), к источникам, одновременно излучающим также види­мые и ультрафиолетовые лучи 
 имеющие более высокую темпера­туру.
 
Наибольшим тепловым эффектом обладают инфракрасные лучи (далее 
 ИК-лучи). Однако, видимые и отчасти длинноволновые ультрафиолетовые лучи также в ка­кой-то степени являются тепловыми. Источники отрицательной ра­диации ограничены, в том числе по диапазону минимальных темпера­тур (ниже абсолютного нуля  -273 °С). Область положительных тем­ператур практически не ограничена.
 
По своему происхождению источники большинства излучений делятся на естественные и искусственные. Самым большим источником инфракрасного излучения является Солнце. В летнее время солнечная радиация в околополуденные часы могла бы достигать 1147 Вт/м2, в условиях же реальной атмосферы на поверхности Земли наибольшая измеренная величина составляет 1049 Вт/м2.





Автор фото:  Valery Lisin / Shutterstock.



 
Например, в Якутске, Москве, Евпатории эти величины соответственно составляют 797, 812 и 776 Вт/м2. Доля инфракрасной радиации составляет не менее 50%. Среди источников искусственного излучения наиболее высоки­ми температурами обладают электрические дуги (2000-4000 °С).
 
Сверхвысокие температуры до 20000 °С могут быть достигнуты в лабораторных условиях при применении ртутных ламп сверхвысокого давления. Однако обычно температура общеупотребительных источников радиации не превышает 3000 °С. Причем  максимальная длина волны (0,99 мкм) лежит в преде­лах инфракрасной радиации. Большая часть температурных источни­ков радиации, применяемых в производстве и в быту, включая источники лучистого отопления, излучают в основном ИК-лучи.
 
В комфортных метеорологических усло­виях теплоотдача излучения лежит в пределах от 43,8 до 59% по отношению к общей величине теплопотерь. Если в производственном помещении имеются ограждения с температурой бо­лее низкой, чем температура воздуха, то удельный вес теплопотерь чело­века  возрастает и может достигать 71%. Было показано, что поверхность человеческого тела, участвующая в лучистом теплообмене, лежит в пределах от 71 до 95 %.
 




 
Нагревающий микроклимат в цехах предприятий многих отраслей промышленности характеризуется преобладанием лучистого тепла, являющегося основным климатообразующим фактором.  


 
ВОПРОС: 


Как меняется интенсивность теплового излучения в зависимости от характера протекания технологических процессов производственных предприятий отдельных отраслей промышленности?

 

ОТВЕТ: 


Спектр излучения включает как длинноволновые, так и коротко­волновые инфракрасные лучи. Применение высокотемпературных про­цессов в металлургии, машиностроении, сварочном производстве способствует  увеличению в спектре излучения коротковолновых лучей, в частности появлению ультрафиолетового излучения. Это требует применения дополнительных мероприятий по профилактике неблагоприятного воздействия излучения этой части оптического спектра на здоровье работников.
 
Интенсивность инфракрасного излучения может находиться в пределах от 2100 до 4900 Вт/м2 в куз­нечных и литейных цехах, от 3500 до 7000 Вт/м2 
 в цехах выработки стекла; от 7000 до 14000 Вт/м2  в мартеновских, электросталеплавильных, доменных цехах металлургических производств.
 



 
Инфракрасное излучение оказывает на организм человека преимущественно тепловое воздействие. Поглощение тепловой энергии ик-лучей происходит преимущественно в эпидермисе человека.



ВОПРОС:  


Каково биологическое воздействие оказывает инфракрасное излучение?
 


 
ОТВЕТ: 


Учеными-гигиенистами доказано различие в восприятии биологическими организмами радиационного и конвективного тепла. Соглас­но имеющимся данным наблюдается более слабая реакция терморе­цепторов кожи на радиационный нагрев или охлаждение (по сравне­нию с конвекционным), что, возможно, связано с трансформацией теплового излучения в более глубоких слоях кожи, в которых плот­ность терморецепторов ниже.
 
У человека два органа являются главными приемниками теплового излучения 
 глаза и кожные покровы. Действие на данные органы проявляется в случае, когда происходит поглощение тепловой энергии. В свою очередь коэффициент  поглоще­ния ИК-лучей, и, следовательно, эффект их воздействия на организм человека  действия связаны с длиной волны, которая обуславливает глубину их проникновения. Необходимо четко понимать, что ключевое значение с точки зрения оценки воздействия ИК-излучения на организм человека играют оптические свойства кожи и одежды.
 



 
При непосредственном облучении кожи в организме возни­кает ряд сложных биохимических процессов.


 
Первой в промышленной гигиене была выдвинута концепция о качествен­ных различиях действия на организм конвекционного и лучистого тепла. В частности   специфичность действия инфракрасного излучения на человека обуславливается проницаемостью поверхностных тканей для тепловых лучей и трансформацией их в тепловую энергию в более глубоко расположенных тканях. Такое тепловое воздействие сопровождается активизацией биохими­ческих процессов и повышением тонуса тканей.
 
Учеными был описан биохимический эффект от воздействия ИК-лучей фотохи­мическим действием, которое проявляется при поглощении белками кожи и активацией ферментативных процессов.
 
Было доказано наличие разно­образных реакций под влиянием инфракрасного облучения, например, уменьшение лейкоцитов и тромбоцитов, более высокий титр и более раннее появление агглютининов в крови иммунизированных живот­ных. Под воздействием инфракрасного излучения понижается тонус вегетатив­ной нервной системы и повышается содержание кальция в крови. Увеличение после теплового воздействия (для всех длин волн) концентрации кальция в плазме крове характерно при интенсивности инфракрасного излучения 350 Вт/м2 и выше.
 
Инфракрасное излучение также способствует нарушению проницаемости клеточных мембран, что было зарегистрировано по из­менению соотношения электролитов в плазме крови. После облуче­ния у испытуемых уменьшалась концентрация клеточного калия и натрия.
 




Автор фото:  Ralf Geithe / Shutterstock.




Выраженность физико-химических процессов (изменение актив­ности свободно-радикальных и антиокислительных систем организ­ма) и тепловых реакций организма зависит от интенсивности и спек­трального состава излучения, определяющего глубину проникнове­ния и поглощения структурными элементами тканей. Увеличение интенсивности свободно-радикальных процессов наблюдалось при воздействии потоков энергии величиной от 70 до 100 Вт/м2. Наиболее выраженным воздействие на организм человека было у ИК-лучей с длиной волны 1,5 и 6,0 мкм, а наименьшее воздействие было зафиксировано  при длине волны излучения 4,5 мкм.
 
Специалисты установили, что при облучении поверхности кожи интенсивностью  до 175 Вт/м2 создаются предпосыл­ки для денатурации белковых молекул, которые зависят как от специфи­ческого действия этого фактора, так и от тепловых процессов.
 
Экспертами отме­чено наличие денатурационных процессов в молекулах белка в соче­тании с нарушением проницаемости клеточных мембран, что, вероят­но, может быть причиной изменения мембранного потенциала клеток крови, появление аутоантигенных свойств, что, в свою очередь, может способствовать развитию аутоиммунных процессов.
 
При интенсивности облучения обнаженной поверхности тела площадью 0,2 м2 (область груди), рав­ной 70-100 Вт/м2, преобладает оптимизирующий эффект, сопровож­дающийся возбуждением свободно-радикальных процессов и высо­ким уровнем антиоксидантной защиты, а также повышением антимик­робной резистентности. При интенсивности 175 Вт/м2 и выше имеет место снижение активности антиоксидантных систем, ферментов. Это сопровождается выраженным снижением антимикробной резистентности организ­ма.


 

 
Многочисленные исследования указывают на значимое участие сердечно-сосудистой системы в ответной реакции на воздействие инфракрасного излучения. Организм отвечает на данное воздействие учащением сердцебиения, повышением систолического и понижением диастолического артериального давления.


 
ВОПРОС: 


У работников каких профессий были выявлены случаи профессиональной заболеваемости, связанной с вредным воздействием инфракрасного излучения?
 


 
ОТВЕТ: 


Учеными-профпатологами отмечается значительная заболеваемость сердечно-сосудистой сис­темы и органов пищеварения среди рабочих горячих цехов, в которых наблюдается высокая интенсивность инфракрасного излучения. У работников «горячих» выявляются дистрофические изменения миокарда в 2-2,5 раза чаще, гипертензия  в 1,5-1,7 раза, артериальная гипертония в 7-8 раз, чем у работающих в условиях, приближенным к допустимым значениям по фактору микроклимата. Удельный вес болезней системы кровообращения среди причин инвалидности рабочих металлургов составляет.
 
Отмечается выраженная «стажевость» в развитии профессиональных заболеваний. Так спустя уже 1 год от начала работы в горячих цехах, наблюдается снижение иммунной реактивности организма работников. Соответственно процесс приспособления организма работников к повышенной внешней температуре воздуха сопровождается нарушениями белкового обмена.
 
У работников, которые на протяжении длительного времени работали в «горячих» цехах, по результатам обследования выявляются ярко выраженные и стойкие  сдви­ги в иммунной реактивности организма. Звенья имунной системы таких работников находятся в постоянном функциональном напряжении, что неизбежно выражается в увеличении случаев заболеваний органов дыхания простудного характера. Полученные данные показывают, что у рабочих в нагревающем мик­роклимате с преобладанием радиационной составляющей не развива­ется адекватная адаптация.
 
На сталелитейных производствах по результатам проведенных ретроспективных эпидемио­логических исследований было показано, что в цехах, в кото­рых микроклимат характеризуется высоким уровнем ИК-излучения (до 1568 ± 240 Вт/м2) и высокой температурой воздуха (32,5 ± 2,0°С) у работников был зарегистрирован рост относитель­ного риска смерти от ишемической болезни сердца, гипертонической болезни, болезней артерий, артериол и капилляров.
 
Проведение исследований вредного воздействия инфракрасного излучения на здоровье работников значительно осложняется тем, что имеются большие сложности в оценке интенсивности и нормирования теплового облучения человека, непосредственно связанные с определением фактической поглощенной дозы. Подобные сложности и погрешности в исследованиях часто определяются фактическими защитными свойствами одежды по тепловому критерию, площадью об­лучаемой поверхности тела и облучаемым участком, геометрической характеристикой падающего потока и другими факторами.  Нельзя сбрасывать со счетов и влияние конвективной составляющей теплообмена человека с окружающей средой при оценке  неблагоприятного влияния перегревания, обусловленного инфракрасным излучением.


 

 
Главную опасность на здоровье работников оказывает воздействие инфракрасного излучения, выражающееся в термальном поражении сетчатой оболочки глаз, травмах хрусталика глаза, приводящих к стойкому прогрессированию катаракты.



ВОПРОС:  


Какими физическими характеристиками определяется вредное воздействие инфракрасного излучения на зрительный анализатор человека?  



ОТВЕТ:  


Важнейшей физической характеристикой вредного воздействия инфракрасного излучения на орган зрения является величина порогового предела инфракрасного излучения (ВПП), которая зависит от большого количества факторов. В основе действия инфракрасной радиации на орган зрения лежит главным образом тепловой эффект. Применительно к отдельным частям глаза было обнаружено, что они пропускают разное количество падающего потока, а именно:
 

 роговица  20-25% от всего потока;
 внутрикамерная влага глазного яблока  20-30% от всего потока;
 хрусталик  до 30% потока;
 стекловидное тело  до 60% потока.
 
До сетчатки доходят лучи спектрального состава от 0,34 до 1,23 мкм. Наиболее частым и тяжелым поражением глаза вследствие воздействия инфракрасных  лучей является катаракта. Характерной чертой является локализа­ция катаракты.  Она всегда начинается в центре задней поверхности хрусталика, затем распространяется во все стороны. Начало заболевания больные, как правило, не замечают. Эта область является оптическим цен­тром, где лучи света, не преломляясь через хрусталик, соединяются все вместе и обуславливают наиболее интенсивное нагревание.





Автор фото: Joyseulay / Shutterstock.



 
Помутне­ние хрусталика отмечается у стеклодувов, а также других категорий рабочих, подвергающихся воздействию теплового излучения от от­крытого пламени или раскаленного металла (литейщики, кузнецы, про­катчики, сталевары и др.). Согласно результатам обобщенных исследований почти все заболевания катарактами профессио­нального характера надают на рабочих старше 40 лет с производ­ственным стажем около 20 лет.
 
Проведенный спектральный анализ теплового излучения и его интенсивности на различных рабочих местах пока­зал, что наибольшему воздействию тепла подвергаются работающие у плавильных печей. Важным критери­ем для определения помутнения хрусталика, вызванного воздействи­ем тепла, является средняя величина силы облучения за рабочую смену. Это та доза, которую рабочий получает длительное время. Но помутнение хрусталика может быть обусловлено и непосредственно термическим эффектом. В этом случае имеет значение максимальная сила облучения, и заболевание может не зависеть от общей дозы облучения.
 
Следует отметить, что при длинноволновом облучении повыше­ние температуры конъюнктивы выражено больше, чем при коротко­волновом. Эта зависимость тем больше выражена, чем выше интен­сивность теплового облучения. Передняя камера глаза, напротив, на­гревается в большей степени при коротковолновом облучении. Доказано, коротковолновые инфра­красные лучи глубоко проникают в глазные среды, а длинноволно­вые поглощаются поверхностными тканями.
 



 
Имеющиеся в настоящее время данные исследований свидетельствуют о неблагоприятном биологическо воздействии инфракрасного излучения на организм человека. Поэтому особое значение приобретают специальные профилактические мероприятия, направленные на эффективное снижение термической нагрузки производсвенной среды на организм работников.  Необходимо учитывать различия в характере воздействия на человека конвекционного тепла и инфракрасного излучения, что требует обеспечить дифференцированный подход к профилактике перегревания человека. Особое внимание должно уделяться защите органа зрения.


 
ВОПРОС: 


Какие меры профилактики перегревания работающего персонала наиболее эффективны при воздействии на работников инфракрасного излучения?
 

 

ОТВЕТ: 


Меры профилактики неблагоприятного воздействия инфракрасного излучения включают:
 

 меры, направленные на недопущение инфракрас­ного облучения человека на рабочем месте;
 меры, направленные па снижение интенсивности ИК-облучения, а также и температуры воздуха на рабочем месте;
 меры, направленные па нормализацию (улучшение) теплового состояния работающих в нагревающей среде и профилактику неблагоприятного действия инфракрасного излучения па кожные покровы (ожоги) и глаза.
 
Повсеместное внедрение новых технологических процессов и оборудования, автоматизация производства могут исключить неблагоприятное воз­действие инфракрасного излучения на человеческий организм. Например, автомати­зация и дистанционное управление процессом непрерывной разливки и прокатки стали позволило практически полностью ликвидировать целый ряд «горячих» профессий металлур­гического производства. На рабочих местах операторов теперь обеспечивается комфортный микроклимат.
 
Снижение температурной нагрузки дос­тигается также соответствующей планировкой и размещением обору­дования в производственных помещениях, уменьшением времени пре­бывания работающих в нагревающей среде. Для локализации тепловыделений от открытых проемов, нагретых поверхностей обо­рудования используются специальные отражающие, поглощающие и отводящие экраны. В результате применения таких экранов достигается десятикратное снижение интенсивности теплового излучения на рабочих местах.





Автор фото:  Joyseulay / Shutterstock.



 
Теплоизоляция нагретого оборудо­вания (минеральная стекловата, стекловолокно, пенопласт и др.) мо­жет снизить температуру оборудования, а также интенсивность теп­лового излучения до величии, регламентированных санитарным за­конодательством («СанПиН 2.2.4.548-96. 2.2.4. Физические факторы производственной среды. Гигиенические требования к микроклимату производственных помещений. Санитарные правила и нормы», утв. Постановлением Госкомсанэпиднадзора РФ от 1 октября 1996 года № 21, далее 
 СанПиН 2.2.4.548-96).
 
В производственных помещениях, в которых на рабочих местах не представляется возможным установить регламентируемые интен­сивности теплового облучения работающих из-за технологических требований к производственному процессу, экономической нецелесо­образности или технической недостижимости необходимо использовать средства, направленные на увеличение теплопотерь организма либо радиацией, либо конвекцией.
 
В данном случает эффективно применение особых экранов с охлаждающей поверхностью, а также устройств для увеличения подвижности воздуха. В отдельных случаях может быть эффективным увели­чение скорости движения воздуха выше нормируемых величин.


 

 
Большое практические значение имеет использование для целей защиты человека от воздействия инфракрасного излучения эффективных срдств индивидуальной защиты поверхности тела и органов зрения.



ВОПРОС:  


Применение каких средств индивидуальной защиты работников от вредного воздействия инфракрасного излучения получило наибольшее распространение? 

 

ОТВЕТ: 


В зависимости от облучаемого участка поверхности тела и его пло­щади могут использоваться костюмы, накладки, фартуки, отдельно куртки или брюки и другие средства защиты. Например, сталевары (особенно при выпус­ке металла) должны быть обеспечены защитным комплектом, в состав которого входят защитный костюм, спецобувь, головной убор, рукавицы, средства защиты лица и глаз. Для защиты работающих в кузнечно-прессовых цехах может быть достаточным фартук, изготовленный из материала с металлизированным покрытием.
 
Практикуется дифференцированный подход к выбору СИЗ. Это связано с тем,   что материалы, используемые для изготовления средств защиты могут быть воздухо- и влагонепроницаемыми (например, с металли­зированным покрытием). Это является препятствием к обеспечению должного тепло-массо-обмена человека с окружающей средой и одной из причин ухудшения самочувствия работника.
 
Следует очень тщательно подходить к выбору средств индивидуальной защиты работников от вредного воздействия инфракрасного излучения. Важно иметь ввиду, что, несмотря на наличие технических требований к защитным показателям СИЗ, многие из представленных на рынке средств защиты не могут в должной степени снимать термическую нагрузку на орга­низм работающих.  В частности, одним из важных критериев выбора СИЗ является наличие таких защитных свойств, которые позволяют избежать поражения кожных покровов из-за нагрева внутренней поверхности одежды свыше 40°С.
 



 
Источники инфракрасного излучения могут быть применены в системах лучистого отопления и обогрева для компенсации повышенных теплопотерь человека в условиях пониженной температуры воздуха.



ВОПРОС:  


Как на практике исключить вредное воздействие инфракрасного излучения на организм работников при его использовании в локальных системах лучистого отопления и обогрева?

 

ОТВЕТ: 


При применении инфракрасных излучателей в качестве источников тепла в локальных системах отопления производственных помещений должны быть соблюдены требования к интенсивности теплового излучения, исключающие его неблагоприятное влияние па человека. Кроме того, во избежание локального охлаждения, должно быть регла­ментировано и допустимое снижение температуры воздуха в помещении по отношению к нормируемым величинам.  
 
В производственных помещениях, оборудованных системами лучистого отопления (обогрева), температура воздуха не должна быть ниже, чем на 4 °С от нормативных величин применительно к холодному периоду года, предусмотренных СанПиН 2.2.4.548-96. При этом относительная влажность и скорость движения воздуха, пере­пад температуры воздуха но высоте рабочей зоны должны соответ­ствовать требованиям, указанным в СанПиН 2.2.4.548-96.
 
Для предупреждения неблагоприятного воздействия инфра­красного излучения на организм человека интенсивность облучения незащищенных участков поверхности головы должна быть не выше 15 Вт/м2 при температуре воздуха, соответствующей нижней грани­це допустимых величин, приведенных в СанПиН 2.2.4.548-96.
 
При пониженной температуре воздуха интенсивность инфракрасного облучения незащищенных участков головы должна увеличиваться на 15 Вт/м2 на каждый градус снижения температуры, начиная от нижней грани­цы нормативных величин, указанных в СанПиН 2.2.4.548-96.
 



 
Инфракрасные излучатели не должны размещаться в зоне прямого воздей­ствия инфракрасного излучения па глаза человека.


 
Интенсивность инфракрасного облучения поверхности туло­вища, рук и ног человека должна быть не выше 25 Вт/м2 при темпе­ратуре воздуха, соответствующей нижней границе оптимальных вели­чин, и не выше 50 Вт/м2 при температуре воздуха, соответствующей нижней границе допустимых величин, указанных в СанПиН.
 
При пониженной температуре воздуха интенсивность инфракрасно­го облучения поверхности туловища, руки ног должна повышаться на 25 Вт/м2 на каждый градус снижения температуры, начиная от нижней границы нормативных величин. При этом максимальная интенсивность инфракрасного облучения поверх­ности туловища, рук и ног не должна превышать 150 Вт/м2 на постоянных и 250 Вт/м2 на непостоянных рабочих местах.


 


 









 



Еженедельный дайджест новостей  портала на электронную почту